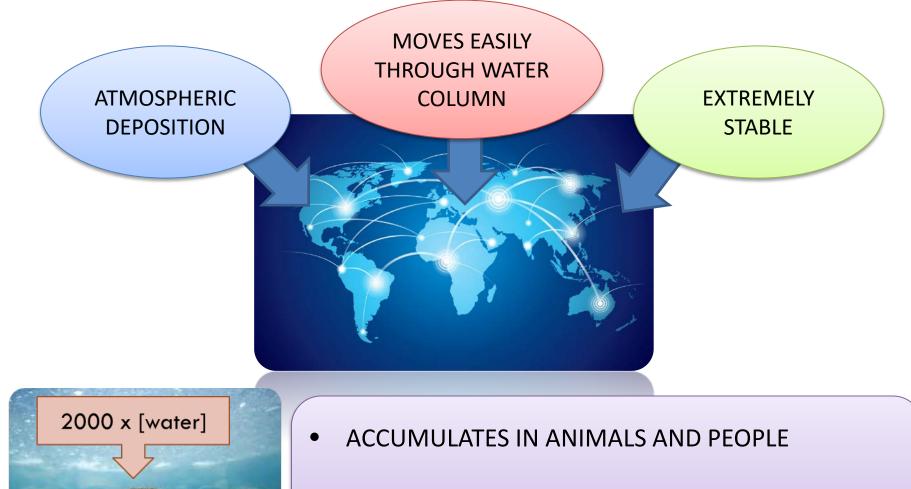
PER- AND POLY-FLUOROALKYL SUBSTANCES

Overview of PFAS Concerns for Alaska Communities

KRISTIN BRIDGES, PhD

11/20/2019


Geosyntec[>]

PER & POLYFLUOROALKYL SUBSTANCES: large class of fluorine-containing chemicals that confer useful properties to many household, commercial & industrial products (e.g., PFOS & PFOA)

PFAS IN THE ENVIRONMENT

 NEARLY EVERYONE TESTED BY THE CDC HAS PFAS IN THEIR BLOOD (NHANES SURVEY 1999-2000)

POTENTIAL HEALTH EFFECTS

Probable link between exposure to some PFAS & following effects

- GASTROINTESTINAL SYSTEM: Ulcerative colitis
- LIVER: liver damage, abnormal fat metabolism, high cholesterol
- KIDNEY: kidney cancer and chronic kidney disease
- CARDIOVASCULAR SYSTEM: pregnancy-induced hypertension
- IMMUNE SYSTEM: decreased response to vaccines
- REPRODUCTIVE SYSTEM: testicular cancer and decreased fertility
- ENDOCRINE SYSTEM: thyroid disease
- DEVELOPMENT- reduced birth weight

Scientists don't yet know what levels are associated with health effects

PFAS CONTAMINATED SITES IN AK

		ADEC: Confirmed Sites in AK Eielson/Moose Creek Regional Fire Training Center (Fairbanks) North Pole Utqiagvik Kenai Gustavus Galena			
Other Pos	sible Sites	King Salmon			
Airports & Military facilities	Firefighter training centers	Dillingham			
Wastewater treatment facilities	Anywhere biosolids are applied	Yakutat			
Landfills	Industrial sites	Juneau			

Geosyntec[▷]

SOURCES OF PFAS IN AK...so far

Municipal Biosolids

Golden Heart Utilities suspends compost sales over PFAS contaminant concerns

Erin McGroarty, emcgroarty@newsminer.com May 30, 2019 🌨

Processed waste from wastewater treatment plants that are applied as fertilizer to crops

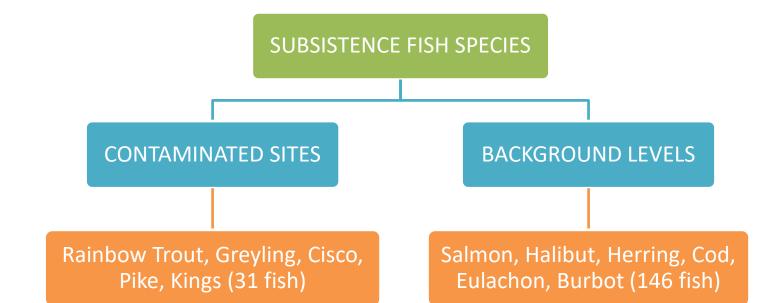
Geosyntec[▷]

PFAS EXPOSURE: GENERAL POPULATION

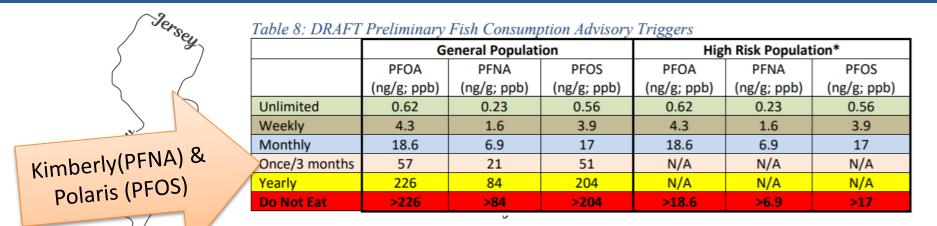
<u>FOOD</u> is the primary exposure source for most people

PFAS EXPOSURE ROUTES IN AK

WHAT ABOUT SUBSISTENCE FOODS?



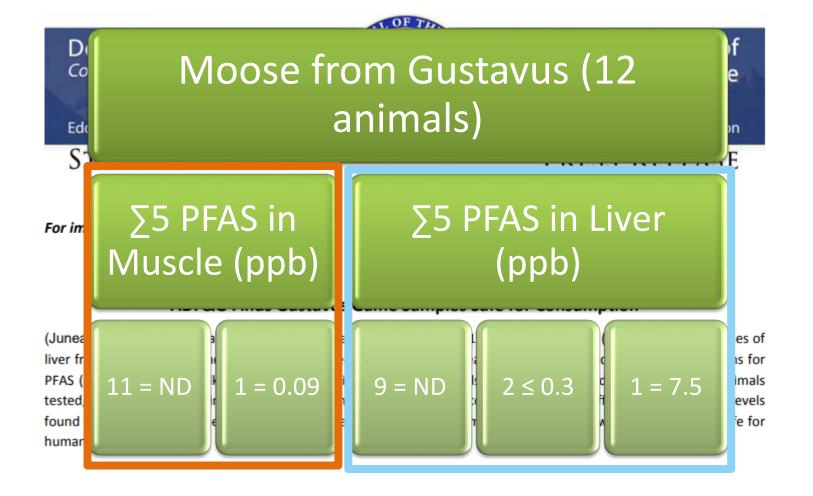
Geosyntec[▷]



Location	Sum of 5 (ppb)				
Kimberly Lake (muscle)	≤ 90 (mostly PFNA)				
Polaris Lake (muscle)	≤ 73 (mostly PFOS)				
Chatanika River (whole)	≤ 1.5 (mostly PFOS)				
Moose Creek (whole)	\leq 129 (mostly PFOS)				
Piledriver slough (whole)	\leq 51 (mostly PFOS)				
Salcha River (whole)	-				

Fish	Sum of 5 (ppb)				
Salmon (muscle)	97 salmon = ND 1 Coho ≤ 26.5 1 King ≤ 3.03				
Marine (muscle)	-				
Burbot (muscle)	≤ 0.4				

RISK- fish consumption


Overarching Conclusions

- AK fish are generally PFAS free, unless they live at/near or migrate through a contaminated Site
- Nearly all detections have been in freshwater
- Very low chance of exposure with marine and anadromous fish
- PFAS should not deter subsistence fishing (remember fish at the grocery store may have PFAS!)

Geosyntec[>]

GAME ANIMALS

RISK- game consumption

	MINNESOTA CONSUMPTION GUIDELINES						
	Reco	ommended Frequency	PFOS				
ALL MOOSE SAMPLES		<u>Unrestricted</u>	< 10 ppb				
		Once per week	10 to 50 ppb				
	Once per month	50-200 ppb					
		Do not eat	> 200 ppb				

Overarching Conclusions

- PFAS does not appear to be an issue in moose meat or liver, even near contaminated sites (PFAS accumulates in serum > muscle)
- PFAS should not deter Alaskans from subsistence hunting (remember meat at the grocery store may have PFAS!)

REGULATORY STATUS

State regulators are leading the way, but there's no consensus, because:

- No federal advice related to PFAS in food
- No federally enforceable guidelines for PFAS in DW
- Conflicting advice from different federal agencies

Geosyntec[▷]

WAYS TO REDUCE EXPOSURE

Geosyntec Consultants

FOOD

• DON'T use non-stick pans (unless PFAS-free), avoid prepackaged foods, don't fish near contaminated sites, don't fertilize with contaminated biosolids

WATER

 DON'T drink PFAS contaminated water unless you've filtered it with GAC or RO

CONSUMER PRODUCTS

 Keep rain/outdoor gear in garage or away from main living space, wet dust and vacuum (more during winter), look for PFAS-free personal care products

Questions??

KBRIDGES@GEOSYNTEC.COM

AK VS OTHER STATES: Water

Geosyntec ^D
consultants

	Year											
	First											
State	Listed	Standard / Guidance	Туре	PFOA	PFOS	PFNA	PFBA	PFBS	PFHxS	PFHpA	Gen-X	
Minnesota (MN)	2017/2019	short-term HBV	DW/GW	0.035	0.015		7	3	0.047			
Minnesota (MN)	2017/2019	subchronic HBV	DW/GW	0.035	0.015		7	3	0.047			
Minnesota (MN)	2017/2019	chronic HBV	DW/GW	0.035	0.015		7	2	0.047			
Michigan (MI)	2019	Screening Levels	DW	0.009	0.008	0.009		1	0.084			
New Jersey (NJ)	2019	ISGWQC	GW	0.01	0.01							
California (CA)	2018	NL	DW	0.014	0.013							
Massachusetts (MA)	2018	Guidance Values	DW	0.070	0.070	0.070		2	0.070	0.070		
New Jersey (NJ)	2018	MCL	DW			0.013						
New Jersey (NJ)	2018	MCL	DW		0.013							
Michigan (MI)	2018	GCC	DW/GW	0.070	0.070							
Vermont (VT)	2018	HA	DW/GW	0.020	0.020	0.020			0.020	0.020		
Alaska (AK)	2018	Action Level	DW/GW/SW	0.070	0.070							
Colorado (CO)	2018	GQS	GW	0.070	0.070							
Maine (MÈ)	2018	RAG	GW	0.400	0.400			400				
New Jersey (NJ)	2018	GWQS	GW			0.013						
New Jersey (NJ)	2017	MCL	DW	0.014								
North Carolina (NC)	2017	Health Goal	DW								0.140	
Rhode Island	2017	Groundwater Quality Standard	DW/GW	0.070	0.070							
Maine (ME)	2016	Health-based MEG	DW	0.070	0.070							
Connecticut (CT)	2016	AL	DW/GW	0.070	0.070	0.070			0.070	0.070		
Alaska (AK)	2016	CL	GW	0.400	0.400							
Delaware (DE)	2016	RL	GW	0.070	0.070							
Delaware (DE)	2016	SL	GW	0.070	0.070			38				
Maine (ME)	2016	Screening Level	GW	0.120	0.120			140				
New Hampshire (NH)	2016	AGQS	GW	0.070	0.070							
Pennsylvania (PA)	2016	MSC	GW	0.070	0.070							
Texas (TX)	2016	Tier 1 PCL	GW	0.290	0.560	0.290	71	34	0.093	0.560		
Vermont (VT)	2016	PAL	GW	0.010	0.010	0.010			0.010	0.010		
lowa (IA)	2016		Non-protected GW		1							
lowa (IA)	2016	Statewide Standards	Protected GW	0.070	0.070							
Maine (ME)	2016	Screening Level	SW/RW	0.170	0.300			7,914				
Nevada (NV)	2015	BCL	DW	0.667	0.667			667				
Michigan (MI)	2015	HNV	SW	0.420	0.011							
Oregon (OR)	2011	IL	SW	24	300	1				300		
North Carolina (NC)	2006	IMAC	GW	2								
			-									

