Division of Environmental Health & Engineering

Public Heath today, Pathway to Pipes tomorrow

Innovative Design, Research and Development Portable Alternative Sanitation System (P.A.S.S.)

Why P.A.S.S.?

Strategy to Eligibility Improved Sanitation Improved Quality of Life

Levels of sanitation service in rural Alaska

State of Alaska Sanitation Profile 2017

Benefits P.A.S.S. unit:

- **1. RAIN CATCHMENT:** Sediment separator begins filtering as it captures the raw water.
- **2. WATER STORAGE TANK:** Dual-filtration system prior to water storage changes how we think of our potable water and its storage.
- 3. LOW-FLOW SINK: A gravity-fed flow of water to wash hands allows for better hygiene and NO MORE WASH BASIN!
- 4. WATERLESS URINAL: Separating the liquid waste allows for less disposal and less odor.
- 5. INTEGRATED VENTILATION: An energy-efficient combined ventilation system dries the solid waste, reduces odors, and ventilates the home – creating better air circulation throughout the home.
- 6. SEPARATING TOILET: Waste is separated into liquid and solid components where the liquid is disposed of into a seepage pit and dried solids are disposed of in the landfill. This toilet provides the option to revert to a containerized system if the drainage system freezes in the cold winter months. NO MORE HONEY BUCKET!
- 7. WATER TREATMENT SYSTEM: The water treatment system incorporates cartridge filters and chlorination for point-of-use treatment to ensure the water is safe to drink despite its condition upon entering the system.

Typical System Layout:

RAIN CATCHMENT
WATER STORAGE TANK
LOW-FLOW SINK
WATERLESS URINAL
INTEGRATED VENTILATION
SEPARATING TOILET
WATER TREATMENT SYSTEM

Re-engineered modifications to address space constraints in older homes PASS 2.0 2018

Engineering design to work with environment: Freeze/Thaw cycle seepage pit

Working WITH the environment, not against it.

- Soil conditions need to be perkable
- Temperature variances could freeze system drainage pit
- Design retrofitting to current housing infrastructure could require extensive remodels
- Homeowner buy-in is essential for success
- User education must be provided one-on-one
- Short-term alternative, possibly only alternative

Opportunities:

- Low Cost compared to piped infrastructure
- Stand alone system with low electrical use
- Portability of components
- Potential for homeowner add-on: circulating pump, hot water on demand, shower
- Potential for phased design approach while awaiting infrastructure

Supporting Infrastructure:

Thermosiphons Remove Heat Migrating from Building Childre Uni-Strut Frame Permafrost Les Blocks and Lenses

Modular Water Treatment Plant

Modular Laundromat/Washeteria

- Watering Point Water Treatment Plant, School, Raw Water Source
- Solid Waste Disposal system
- Landfill

Cost for P.A.S.S. unit:

Materials ONLY:

Seepage Pit	\$600.00
Diverting Toilet	\$1,926.00
Ventilation	\$500.00
Water Treatment System & Tank	\$5 <i>,</i> 567.00
Rain Catchment System	\$500.00
Sink, Faucet, & Misc. Plumbing fittings and valves	\$1,000.00

Variable Costs:

Archeological Remodeling Installation Logistics and transportation Design & Engineering (if needed) \$10,093.00 TOTAL

Current PASS Projects

Current Projects:

Northwest Arctic: Kivalina Interior: Chalkyitsik, Allakaket, Alatna YK Delta: Oscarville

Seepage Pit, Chalkyitsik

Elder Home, Allakaket

Elder, Allakaket

Current Projects:

Chalkyitsik Home

Complete Install Bath remodel Elder + 3 grandkids

Oscarville Home

Complete Install New Construction 2 Adults, 5 children

Design Boards

Current Projects:

Finished Kitchen

Benefits of water and sanitation

Toilets

Hand-washing

Drinking water

Cooking

Benefits of water and sanitation

Primary barrier: prevention of infectious organisms from getting into the environment

Secondary barriers: avoidance of infectious organisms, removal or destruction of infectious organisms

Historically: AVOIDANCE

Now: high-tech systems that require a lot of work

http://watersewerchallenge.alaska.gov/ruralCommunities.html

Overview of water and sanitation research in Alaska

Water quality

- Contamination during transport
- Treatment and disinfection
- Waste disposal (manual and uncontained)
- Untreated reuse

Water quantity

Thomas et al. 2016 Journal of Water and Health Water use increasing from **1.5 to 25** gal/person/day leads to decline in illnesses:

- 16% decrease in respiratory
- 20% decrease in skin
- 38% decrease in gastrointestinal

Portable Alternative Sanitation System

Water treatment unit and storage tank

Low-flow gravity-fed sink and drainage

Separating toilet w/ ventilation

Photo credit: Jackie Schaeffer, ANTHC

Theoretical benefits of PASS

PASS Health Impact Study

Research Questions

1) How is water used inside and outside of the home?

- 2) How is waste managed inside and outside of the home?
- 3) Have the PASS units improved overall health?
- 4) How have the PASS units affected household water access, sources, and uses?
- 5) Does the PASS unit fit into existing behaviors, desires and culture?

Year 1

Collect data from homes with honeybuckets in two communities

Install PASS in volunteer homes Year 2

See how water quality, quantity and behaviors change.

Current observations

EPA Parameter	Traditional Parameter
Bacteria	Odor, stagnant water
тос	Color of ice, time of year
рН	
Turbidity	Cloudy, silty

Adaptive capacity

Evaluating the sustainability of PASS

Technical/ Environmental

Financial/ Institutional

Social

Improving the way we do things

<u>Primary</u> sustainability criteria	SELECTED <u>secondary</u> sustainability criteria
Institutional and financial	Operation and maintenance support Tribal support and advocacy Supporting water, waste, hygiene, transportation infrastructure Assistance for vulnerable households
Technical and environmental	Engineering planning Quality materials and pre-fabricated kits User-centered design and installation Freeze-prevention
Social	Management of expectations Homeowner training Awareness of culture and traditions User acceptance Reduce barriers to proper operation Routine minor maintenance Transfer ownership to homeowners

PASS conclusions

- Water for critical hygiene needs
- Simple, low operation and maintenance
- Good results but real health improvements?
- Improve sustainability

Quyana! Taikuu! Thank you!

Alaska Native Tribal Health Consortium Division of Environmental Health and Engineering 4500 Diplomacy Drive, Suite 454 Anchorage, Alaska 99508 (907) 729-1900

Email: Jackie Qataliña Schaeffer: <u>jdschaeffer@anthc.org</u> Kaitlin Mattos: kjmattos@anthc.org

